Advanced Vanadium Flow Batteries and Applications for Renewable Integration

Vanadis Power GmbH

Intersolar Europe

June 17th, 2013 Munich

Personal data

44 years old

Education

Dr. rer. nat (PhD) in Physics

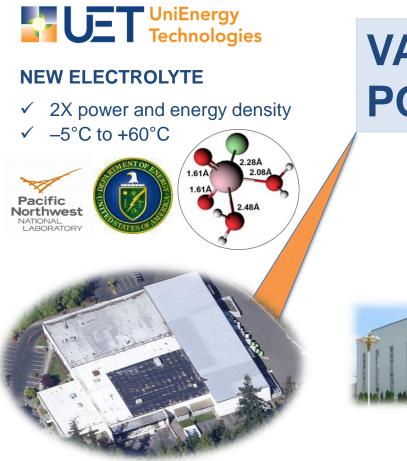
Professional experience

- 1994-1996: Research Associate Laser Laboratory Goettingen
- 1996-1999: Software Engineering Siemens Power Generation
- 1999-2003: Innovation Manager Siemens Industrial Services
- 2003-2008: Head of R&D group Siemens Automotive Projects
- 2008-2012: Business Development & Project Management Siemens PV Inverters
- 2012-2013: Head of Siemens Energy Storage Solutions

Since 2013: Managing Director of Vanadis Power GmbH

Vanadis was founded end of 2012 to bring to the European market Advanced Vanadium Flow Batteries for integration of renewable energy & other applications.

Through innovation, expertise and global strategic partnerships, **Vanadis' mission** is to become a leader in large- and medium-scale energy storage in Europe.


Our activities are sales, project management, system deployment (focus on PCS and grid integration) and services.

Origin of the company name:

"Vanadis" is the name of a goddess associated with beauty.

Vanadium was called after this goddess due to the many beautifully colored chemical compounds it produces.

Vanadis' strategic partnerships

PRODUCT PACKAGING

6200m² design & manufacturing facility in Seattle, USA

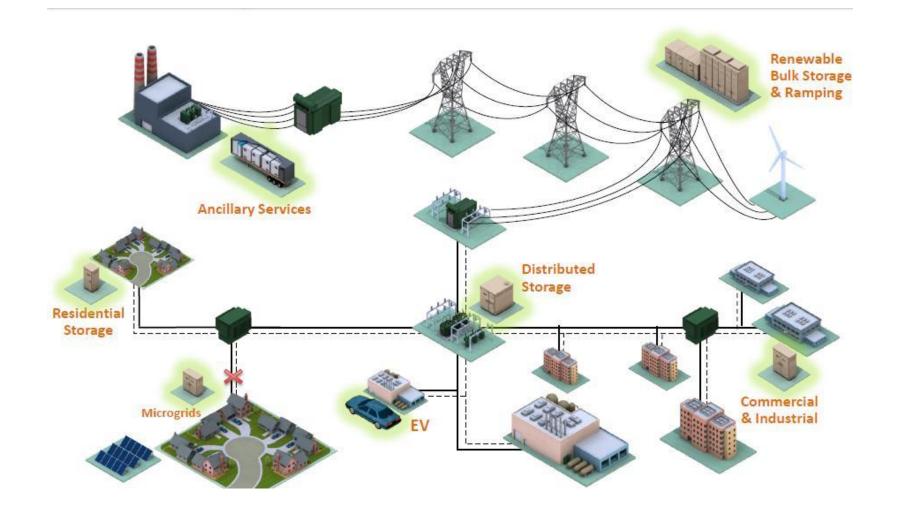
VANADIS POWER

ELECTROLYTE PRODUCTION

Electrolyte production capacity >1.5GWh/year

FIELD EXPERIENCE

5MW/10MWh wind firming installation and numerous others



STACK PRODUCTION

More than 6 years design & production experience Up to **30MW/year** stack capacity in 2013

Vanadis Power

Uses of storage - many grid locations

17-Jun-13 Vanadis Power

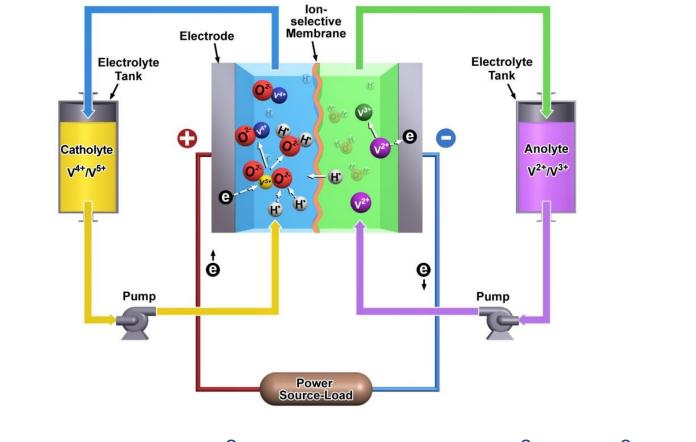
Renewable Integration

Smooth out intermittency of solar and windgenerated power, enable grid interconnection, and make more effective use of renewables

Time Shifting

Storing off-peak electricity to meet peak demand, and reduce curtailment of renewable energy

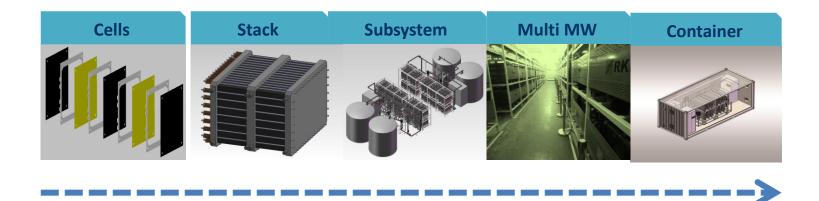
Smart Grid


Enable smart grid functionality to improve grid reliability and compatibility; help balance generation and demands; enhance utility assets

Microgrids & Remote Areas

Provide energy storage solutions and power supply for microgrids & remote areas, including islands, bases, communication stations, mines, and others

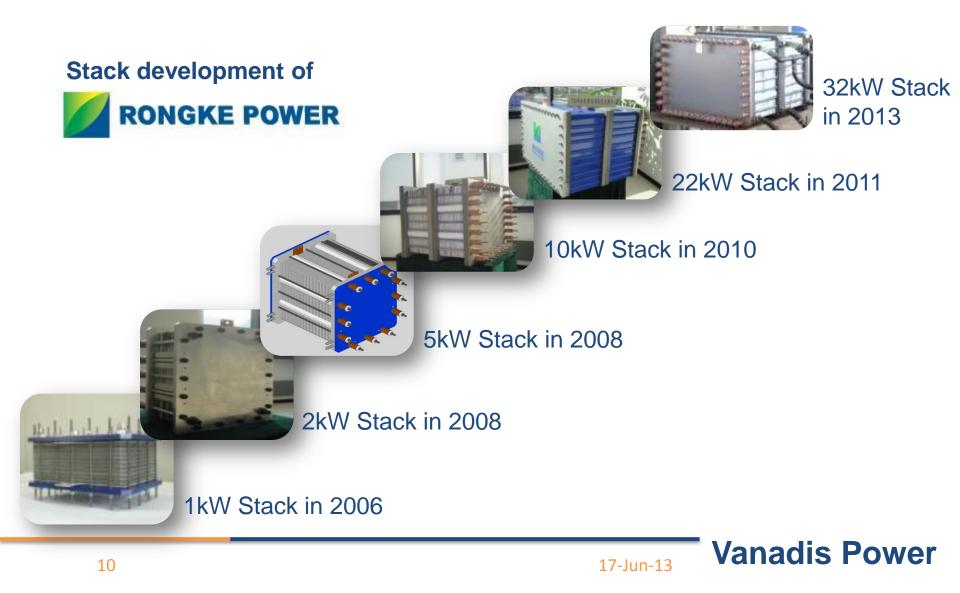
Conventional vanadium redox flow battery (VRFB) – Basic electro-chemistry

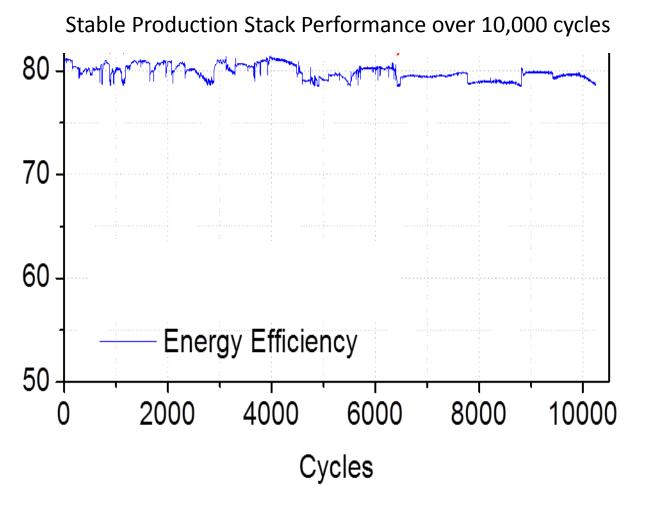

 $VO_2^+ + 2H^+ + e^- \leftrightarrow VO^{2+} + H_2O$ $V^{2+} \leftrightarrow V^{3+} + e^-$

17-Jun-13 Vanadis Power

Conventional VRFB's have many advantages

- Separation of power (KW) -stacks and energy (KWh) electrolytes -> each can be individually sized according to application needs
- Adding additional energy just requires bigger electrolyte tanks which is simple and quite cheap
- No self discharge in electrolyte tanks
- "Inert" electrodes no structural changes or stress buildup
 - long cycle life & shelf life, independent of state of charge/depth of discharge
- Inherent active heat management flowing electrolytes carry away heat generated from electro-chemical reactions -> Uncontrollable fire known with NaS, Lead Acid and Li-Ion applications not possible
- Environmentally friendly since electrolyte only changes the ion valence during operation and can be virtually be reused forever
- Highly dynamic in the millisecond range with high overload capacity
- Capable of storing large quantities of energy (MWh's) for long periods and discharging upon need


Modular system architecture enables high scalability


Cells with optimized design & materials, in powerful reliable & efficient stacks

- Standard stack subsystems for ease of installation and operation
- Turn-key Multi MW and Container solutions

One of R&D focus is to increase stack power rating to reduce costs

Stable 22kW stack performance over 10,000 cycles

RONGKE POWER

The mature production hardware provides solid stability over extended cycling, requiring no electrical balancing procedures

Test parameters:

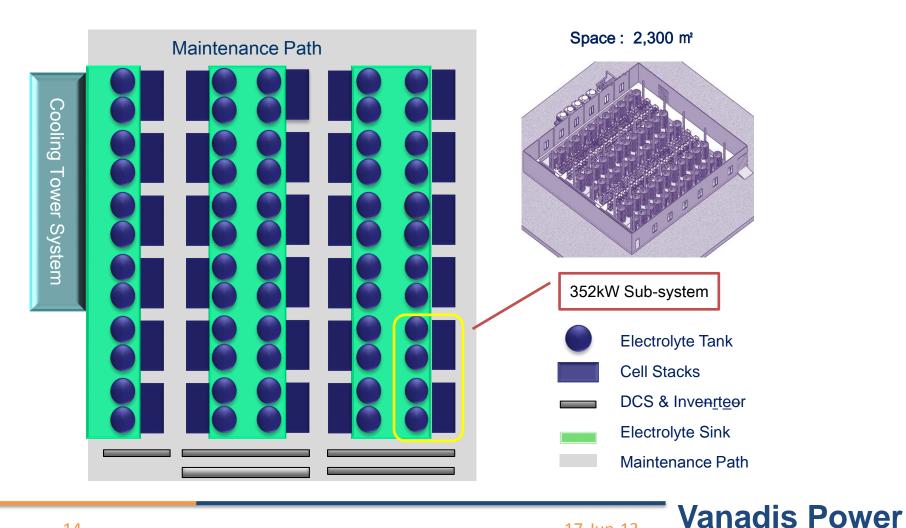
Electric current:	320A
Temperature:	22-25°C
Cooling:	Liquid
E'lyte Temp:	<40°C
Cycles:	10,000

Application	Output Capacity	Year of Installation	Country
Wind farm operation support	5MW/ 10MWh	2012	China
Wind farm operation support	4MW/6MWh	2005	Japan
Wind farm operation support	3MW/6MWh	2013 (in progress)	China
Demonstration project in conjunction with CPV	1MW/5MWh	2012	Japan
Load leveling at university	0,5MW/5MWh	2001	Japan
Wind farm operation support	1MW/4MWh	2013 (in progress)	Germany
Industrial Peak Shaving	0,6MW/3,6MWh	2012	USA
Demonstration with Wind/PV	0,2MW/1,2MWh	2013	Germany

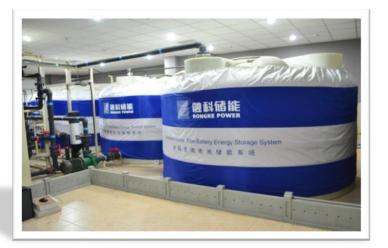
Example: 5MW/10MWh system at Longyuan wind farm

Time	August, 2012
Location	Faku County, Liaoning Province
Owner	Longyuan Group
Function	Scheduled operation following; Wind output smoothing; Voltage support, etc.

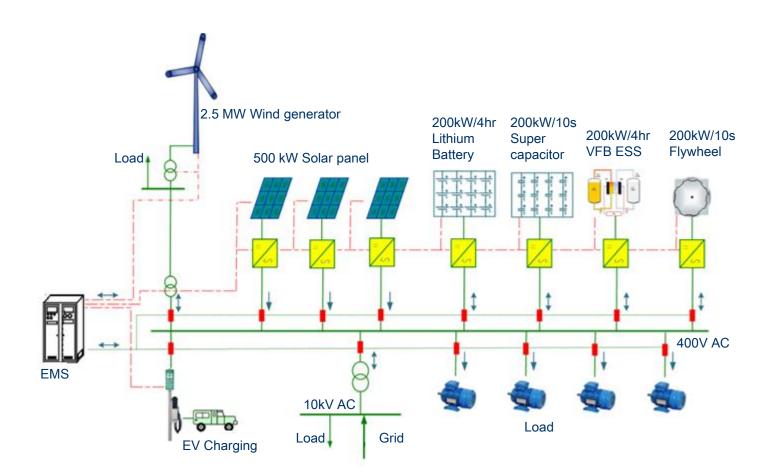
Main parameters of energy storage system


Power	5 MW
Capacity	10 MWh
Voltage Range	DC 400-620V
Rated Current	DC 640A
Ambient Temperature	5-35°C

17-Jun-13



5MW/10MWh system layout


Time	October, 2011	Beijing
Location	Yizhuang, Beijing	Tangshan
Owner	Goldwind Corporation	Langtang
Function	Smooth wind output; Improve power quality; Increase grid reliability, etc.	Tianjin Dalian

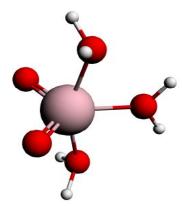
Main parameters of energy storage system		
Power	200 kW	
Capacity	800 kWh	
Voltage Range	DC 250-388V	
Rated Current	DC 640A	
Ambient Temperature	5-35°C	

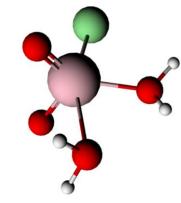
17-Jun-13 Vanadis Power

Site Design Overview

17-Jun-13

Challenges of conventional VRFB's


□ <u>Fundamental chemistry challenge</u>:


- Limited stability of conventional VRFB electrolyte chemistry
- $>\sim 35^{\circ}$ C or $<\sim 10^{\circ}$ C, Vⁿ⁺ compounds precipitate out
- Limited Vanadium concentration: <1.5 M vanadium

Consequences:

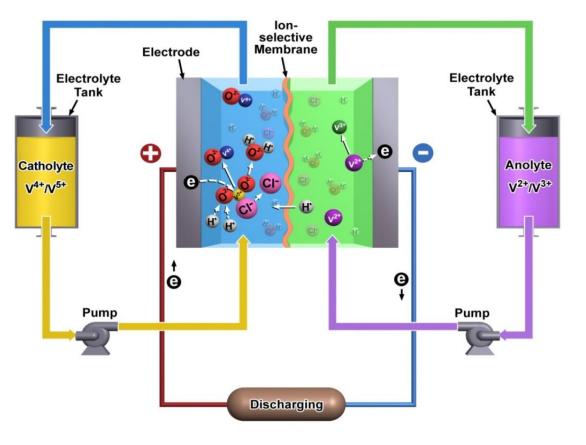
- Low energy density ~15Wh/L, limiting battery design and siting
- Operation limited to ~10°C ~35°C, requiring strict heat management and associated cost and efficiency loss
- Low current densities (≤80 mA/cm²), limiting stack power and reduction in \$/kW

New electrolyte chemistry - vanadium mixed acid

 V^{5+} in sulfuric acid -- $[VO_2(H_2O)_3]^+$

18

 V^{5+} in mixed acids -- $VO_2Cl(H_2O)_2$


Vanadis Power

- □ Substantially improved chemical stability
- Vⁿ⁺ up to 2.5M, practically double energy capacity (30Wh/L, due to a higher utilization as well)
- □ Stable ~-5°C↔~60°C without irreversible solid phase precipitation, minimizing thermal management

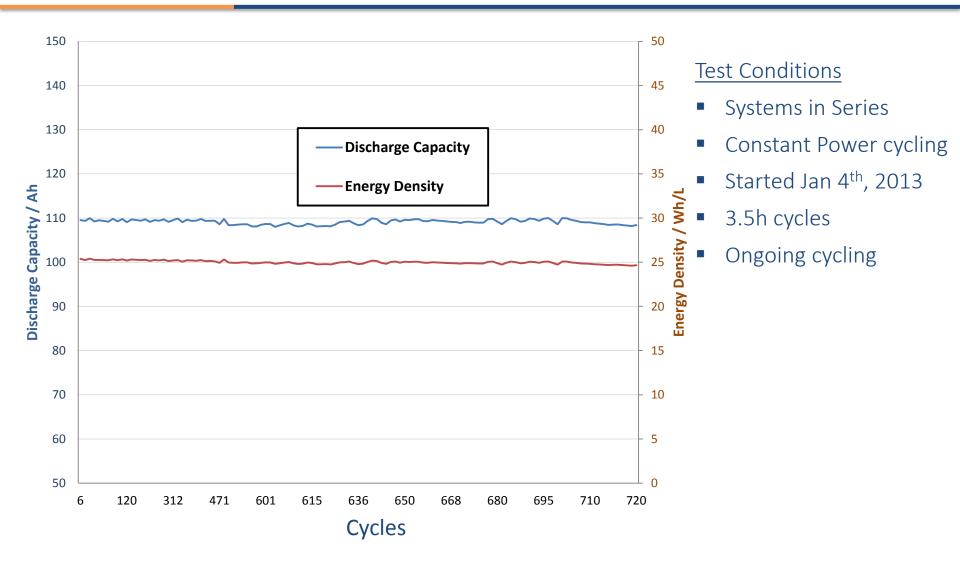
17-Jun-13

Improved performance, durability, and reliability with reduced capital and levelized costs

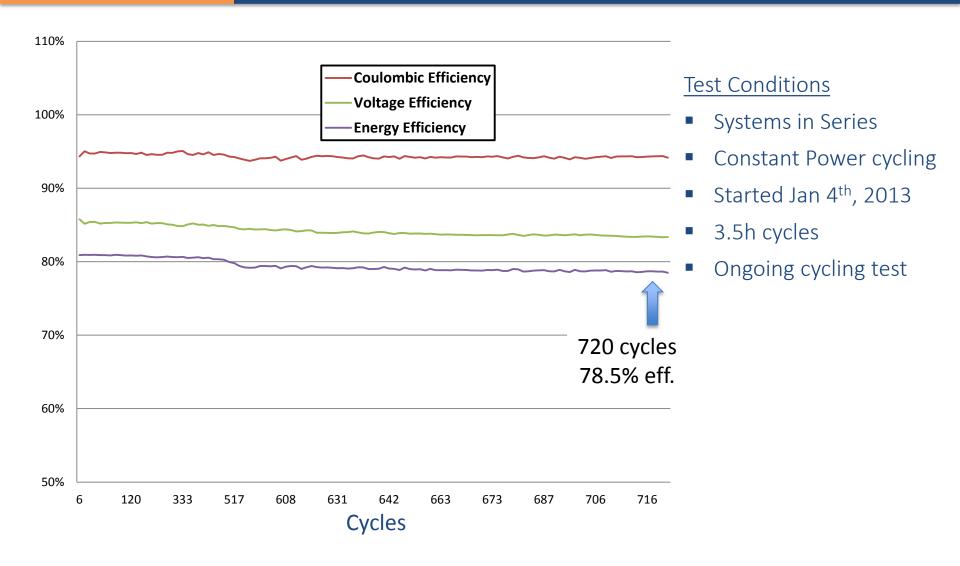
Advanced VRFB's

- Vⁿ⁺ concentration ~2.5M;
 2x increase in energy and power density
- Stability window extended to ~-5°C - ~60°C, minimizing heat management
- Stable operation without frequent balancing
- Reduction in capital and levelized cost by factor of 2 or even 3

Vanadis Power


Validation of advanced chemistry by UET

Two 2kW systems operating in series at UET's facilities in Seattle


Vanadis Power

2kW systems in series testing – capacity analysis

17-Jun-13

2kW systems in series testing – efficiency analysis

Full-scale advanced VRFB testing at UET

33 kW system operating at UET's facilities in Seattle

Vanadis Power

Advanced electrolyte allows better packaging with less cooling

Example of 1MW/4MWh with electrolyte integrated in container

U-T UniEnergy

195m² footprint (**5kW/m²**)

Can be further increased by stacking

Vanadis Power

8 x 125kW/500kWh battery modules (no step-in, side or rear access needed)

500kW power & control module

17-Jun-13

370

Footprint of containerized solution with advanced electrolyte is significantly smaller than previous installations

1MW/5h "classic" System

Vanadis Power

Vanadis Power

UET UniEnergy Technologies

Dr. Andreas Luczak
Vanadis Power GmbH

⊡: Zeltnerstr. 3

90443 Nuremberg, Germany

2: +49 911 8819 7218

- *****: +49 911 8819 7218
- @: andreas.luczak@vanadispower.com

融科储能 RONGKE POWER BOLONG NEW MATERIALS

Thank you!