Advenaced Vanadium Flow Batteries Vanadis Power GmbH

- Vanadis was founded in 2013 to bring Advanced Vanadium Flow Batteries for integration of renewable energy & other applications to the European market
- **Our activities** are focused on sales & service, project management, system deployment including grid integration
- Vanadis is the winner of the "2015 Global Energy Storage Competitive Strategy Innovation and Leadership Award" awarded by Frost & Sullivan.

• Vanadis is certified according to DIN EN ISO 9001.

Vanadis' strategic partnerships

SYSTEMS WITH NEW E'LYTE

6200m² design & manufacturing facility in Seattle, USA

VANADIS POWER

ELECTROLYTE PRODUCTION

Electrolyte production capacity > 1GWh/year

SYSTEM DEVELOPMENT

Field installations since 2008 Numerous MW-scale Projects and more

KEY COMPONENTS AND SYSTEM MANUFACTURING

Over 10 years design & production experience; 300MW/year capacity

©2017 Vanadis Power GmbH All rights reserved.

About Vanadium Redox Flow Batteries

4

A Vanadium flow battery cell works with a couple of electrochemical <u>reduction</u> and <u>ox</u>idation reactions of vanadium ions in acidic aqueous solution (electrolyte).

Cathode: $V^{3+} + e^{-} \implies V^{2+}$

Anode: $VO^{2+} + H_2O \implies VO_2^+ + 2H^+ + e^-$

Charge : — Discharge: _

A Vanadium flow battery (VFB) system consists power modules as stacks of cells, electrolyte tanks and piping auxillaries, as well as Power Conversion Systems (PCS).

Whole value chain: from Vanadium to Battery System

The unique position of Vanadis-UET-Rongke company group to possess the whole value chain from Vanadium to Vanadium Flow Battery systems enables the continuous optimization of chemistry and system design.

- 20 years experience of Bolong Group in processing and recycling of Vanadiumcontaining raw materials and chemicals – Bolong New Materials is a world leading manufacturer of Vanadium chemicals and electrolyte
- > 10 years of research and development in battery cells and key functional materials including membrane and bipolar plate; 10 years field tests of VFB systems lead to mature high performance power stacks and system design
- Leading experts of Vanadium Flow Battery technology in USA and China bring breakthrough research results of laboratory to advanced industrial products

Proven, High Performance Power Stacks

©2017 Vanadis Power GmbH All rights reserved.

UET Break-Through VRFB Chemistry

The new generation of electrolyte - developed at and licensed from PNNL, optimized and commercialized at UET

- □ double power & energy density improvement → significant product footprint reduction
 - Extraordinary electrolyte stability wide operation temperature window from -40°C to +50°C
 - Remain power/energy flexible, safe, unlimited cycle life, 0-100% SOC
 - Won the US Government's highest Award of Excellence in Technology Transfer to UET

Highly Integrated Containerized UniSystem [™] Design

- Modular, efficient production
- Built-in secondary containment
- Full factory integration
- System-level factory testing
- Ready for transport
- No onsite building required
- More rapid permitting
- "Plug and Play" deployment
- Incremental deployment
- > Option for relocation or removal
 - » Enables lease financing as non-fixed assets

Smallest footprint for multi-MW large scale storage system - no risk of thermal runaway makes compact block-stacking possible

UniSystem [™] product flexibility for 4h/6h/8h Solution

Product Specs		1000V PCS 4 cont/string	1500V PCS 6 cont/string
Uni.System (4hr) 20' container	Power (kW)	500	750
	Energy (kWh)	2,000	3000
Uni.System (6hr) 30' container	Power (kW)	500	750
	Energy (kWh)	3,000	4500
Uni.System (8hr) 40' container	Power (kW)	500	750
	Energy (kWh)	4,000	6000

Uni.System (4hr) 20' container 125kW / 500kWh Increased storage duration requires no additional components beyond more e'lyte. Therefore on a kWh basis:

- System complexity is reduced
- Auxiliary power is reduced
- Reliability is increased
- Maintenance costs are reduced
- System footprint is reduced

Uni.System (8hr) 40' container 125kW / 1,000kWh

Containerized Power Modules + Electrolyte Tanks

All-In-One VFB Capable for Stacking Applications

- Renewable Integration (solar, wind power)
- Ancillary Services & Other
 Market Revenue Services
- T&D System Capacity & Reliability Support
- Commercial & Industrial
 Customer Savings
- ← Microgrids & Isolated Loads

Vanadis VFB systems support multiple applications, capturing multiple benefits

Competitive edge - Safe, flexible, sustainable and economic

- Intrinsically safe: Non-flammable Aqueous electrolyte; No thermal runaway; Electrochemical reaction at normal pressure and temperature;
- Flexible: Independently rated energy and power capacity, better scalability;
- Sustainable: No degradation under deep discharge; unlimited cycle life; Recyclable electrolyte;
- Economic: Lowest levelized cost of system and energy (LCOS and LCOE); Recyclable electrolyte

"The singular advantages of flow batteries...make them particularly well-suited for relatively large utility applications."—— EPRI, USA (2006)

Fire accidents reported on Li-ion, Na-S, advanced Pb-acid, etc.

Capacity degrades over cycling for traditional batteries, but remains stable for VFB (blue)

VFB has been established as mainstream of flow batteries

The world largest operational flow batteries are all Vanadium-based! - No cross contamination of reactive materials

Application	Power/Capacity	Commissioning	Country
Wind farm operation support	4MW/6MWh	2005	Japan
Demonstration project in conjunction with CPV	1MW/5MWh	2012	Japan
Utility Service	15MW/60MWh	2015	Japan
Wind farm operation support	5MW/ 10MWh	2012	China
Wind farm operation support	3MW/6MWh	2013	China
Wind farm operation support	2MW/4MWh	2014	China
Smart Grid	0.75MW/3MWh	2016	China
Peak load power plant (*under construction)	200MW/800MWh	2017-2018	China
Industrial Peak Shaving	0,6MW/4MWh	2012	USA
Grid support at industrial plant	1MW/4MWh	2014	USA
Grid support at substation	2MW/8MWh	2016	USA
Demonstration with Wind/PV	0,2MW/1MWh	2013	Germany
Wind farm operation support	0,3MW/1MWh	2014	Germany
Grid support at substation	0,5MW/2MWh	2016	Italy

By Vanadis/Rongke/UET

USA - AVISTA Utility Project 1MW / 4 MWh

14

Applications:

- Energy shifting
- Provide grid flexibility
- Improve distribution systems efficiency
- Enhanced voltage control
- Grid-connected and islanded micro-grid operations
- Islanding, black start, 4 cycle ride-through
- Optimal utilization of energy storage

Deployed December 2014

Germany - Customized indoor system

- 325kW/1MWh in Germany's largest installed Redox Flow Battery
- Customer: Energiespeicher Nord (Bosch & BWP)
- Commissioned in September 2014
- Applications:
 - Optimization of self consumption of wind farm
 - Reduction of curtailments

Italy - 0.5MW/2MWh Uni.System for grid operator Terna

China – Windfarm Project with 5MW/10MWh storage

Blue: Combined Output Red: Wind Output Black: ESS Output

- 5MW/10MWh Indoor System
- Location: Liaoning, China
- Customer: Longyuan Substation
 - Commissioning: August 2012
- Applications
 - » Wind-Firming
 - » Wind-Smoothing
 - » Grid support, etc.

China – 200MW/800MWh storage as peak power plant

- A pilot project of the National Energy Department with 200MW/800MWh VRFB as peak load reserve for electricity supply of Dalian city
- 2 Phases realization till end of 2018
- Container power modules and stacked electrolyte tanks

VANADIS POWER

UET UniEnergy Technologies

Vanadis Power GmbH

→: Nordostpark 102
 90411 Nuremberg, Germany

★: +49 911 9566 7278

@: info@vanadispower.com

www.vanadispower.com

